
Abstract. The path integral method is used to calculate
the quantum mechanical free energy at low temperature.
Based on the variational harmonic reference system and
implemented by the partial averaging technique, the
path integral can be cast into the form of a classical
con®gurational integral with the original potential
replaced by an e�ective one. We compared this approach
with other related methods and found that it gave better
results than the others considered in this paper. Fur-
thermore, the multidimensional implementation of this
method is discussed.
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1 Introduction

Feynman path integral methods have proved to be quite
useful in the calculation of thermodynamic functions
such as the density matrix element, the partition function
and other equilibrium thermodynamical properties [1±
10]. To evaluate the Feynman path integral, one
approximation is to discretize the quantum path such
that the quantum particle becomes isomorphic to a chain
of p classical beads connected with each other through a
temperature-dependent harmonic force [2±5, 11]. An-
other equivalent approximation is to expand the quan-
tum path in a Fourier series [1, 12] and to use only the
®rst p low-order terms in numerical calculations. Both
approximations share the common feature of ``truncat-
ing'' the terms or beads presumed to represent a
negligible contribution. These approximations have been
shown to give accurate and converged results for cases at
relatively high temperature, where small p will usually
su�ce. However, at low temperatures these approxima-
tions start to su�er from slow convergence, because
larger p is required to account for the increasing
quantum e�ects at low temperature. Various schemes
[10, 13±17] have been devised to overcome the need for
large p at low temperature. Feynman introduced an

e�ective potential approach [1] to evaluate the path
integral without the need for discretizing the quantum
paths. This approach incorporates quantum e�ects by
averaging the potential over the quantum paths, and
thus generates a new e�ective potential, with which the
quantum mechanical partition function can be conve-
niently calculated using a modi®ed classical con®gura-
tional integral. Unfortunately, this e�ective potential
approach is unsatisfactory at low temperature. One way
to improve the e�ective potential approach is to use the
``partial averaging'' technique [17], where the original
potential is averaged only over the high-order Fourier
terms, while the low-order ones are calculated explicitly
by numerical schemes such as the Monte Carlo method.
Another way to improve the e�ective potential approach
is to ®nd a better reference system; Feynman's original
e�ective potential can be shown to be derived from a free
particle reference system. Di�erent reference systems
such as the local harmonic [9] or the variational
harmonic [6, 7] reference systems have been proposed
to improve the e�ective potential approach. In this paper
we introduce a path integral approach based on the
variational principle and the partial averaging technique.
We compare this approach with other related methods [9,
10] in the calculation of quantum mechanical free energy.

2 Methods

The quantum mechanical partition function is written in
terms of the Feynman path integral [1],
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Z
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where p, m and V are momentum, mass and the potential
function of the system, respectively. b is 1=kT , where k is
the Boltzmann constant and T , temperature. The path
x�s� is expanded in the Fourier series, i.e.,

x�s� � x0 �
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where x0 �
R �hb
0 x�s�ds and Xn � 2np=�hb.

By separating the terms with n > p and the terms with
n � p, we can write Eq. (1) in the following form:
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Note that the frequency x is not yet speci®ed and will be
determined variationally, as will be shown later. Making
use of the ®rst-order cumulant inequality for the free
energy [1], and integrating out the Fourier terms with
n > p, we obtain

Z �
Z

dx0������������������
2p�h2b=m

q Yp

n�1

dandbn

p=bX2
nm

� exp ÿbW x0; a1; b1; . . . ; ap; bp
ÿ �� � �4�

where W , the generalized e�ective potential, is given by

W x; a; xp�s�
ÿ � �Xp

n�1
mX2

n a2n � b2n
ÿ �ÿ 1

2mx2a2

ÿ 1
b ln

�hxb=2
sinh �hxb=2

Yp

n�1

X2
n � x2

X2
n

 !

� 1

�hb

Z�hb

0

ds ~V xp�s�
� � �5�

where xp�s� is the approximate path retaining the
Fourier coe�cients up to n � p, and the function
~V �xp�s��, called the ``smeared potential'' [6], is given by
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The Gaussian width, or the ``quantum spread'', a,
and the frequency x are determined by minimizing W
and are given by the following iterative equations:
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where the superscript 2 denotes the second derivative.
Equations (5), (7) and (8) are the main equations of

the paper. For convenience, we will refer to this ap-
proach as the ``variational harmonic'' (VH) method.

A similar approach [9] based on the local harmonic
reference system was previously introduced and the
equations in their original forms are given below:
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Equations (9) and (10) are referred to as the local
harmonic (LH) approximation. The major di�erence
between the VH and LH approaches lies in the way that
the frequency x is evaluated. The VH approach uses the
optimized frequency (Eqs. 7 and 8) obtained by mini-
mizing Eq. (5) through a variational principle, while the
LH approach approximates it by a local harmonic
frequency, i.e., x2 � V 00�x0�=m. Note that the in®nite
sums appearing in Eqs. (9) and (10) can be shown to be
equivalent to the corresponding terms in Eqs. (5) and
(7). The LH approach has been used to calculate
thermodynamic averages at low temperature [9].

It is also possible to use the free particle as the ref-
erence state for evaluation of Eq. (1), and the resultant
equations for the e�ective potential WFP and the
Gaussian width aFP are given as
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This method will be referred to as the free particle (FP)
approximation. These equations can be shown to be
equivalent to the one proposed by Doll and Freeman
[12] for the density matrix element. It should be noted
that, in the case of p � 0, Eqs. (11) and (12) reduce to the
original e�ective classical potential method introduced
by Feynman [1]. The multidimensional implementation
of our method, as in the case of the LH method, is rather
straightforward. The N -dimensional version of the
smeared potential ~V �xp�s�� is written as
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where the mass-weighted coordinates xi are used.
Consider an N � N matrix F de®ned by
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Fij � 1
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where Vxixj � @2V =@xi@xj, then the quantities nj and a2j in
Eq. (13) are given, respectively, by
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where xj and Cjk are the jth eigenvalue and its
corresponding kth eigenvector of F. As in the case of
the LH method, we need to construct and diagonalize
the F matrix in the multidimensional calculations. The
di�erence between the VH and LH methods lies in the
way that xj and ai are calculated. Our approach involves
the non-linear optimization of the frequency factor. This
presents no problem, however, since the optimization
involves only trivial iterative calculations of Eqs. (14)
and (15), which quickly converge after a few steps.
Actually, the most time-consuming part of both ap-
proaches is the calculation of the e�ective potential, i.e.,
Eq. (13). However, this could be remedied to some
degree by approximating the e�ective potential by the
following expression:

~V xp�s�
� � � V �xp�s�� � 1
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where W and A are the diagonal matrices of xi and a2i ,
respectively.

3 Results and discussion

The model system comprises a harmonic potential
coupled to an anharmonic term, i.e.,

V �x� � 1
2 x2 � cx4 �17�

For this system, both the smeared potential and the
frequency can be solved analytically, and we obtain
m � 1; �h � 1�,
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It is usually di�cult to obtain the analytical solutions
for the smeared functions, and the following series
should be useful for practical applications:
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In the model system we have deliberately used the
relatively large coupling, c � 250, to enhance the an-
harmonic e�ects, in order to check to what extent our

approach can be applied to the anharmonic systems,
since the LH and VH approach give exact results for
harmonic systems.

Figure 1 shows the calculated free energy, i.e.,
F � 1

b ln Z, as a function of b for p � 6. The VH
approach gives quite accurate free energies throughout
the temperature range considered, while the other ap-
proaches, especially the FP method, start to deviate from
the exact results when the temperature is lowered. In
Fig. 2a, we compare the calculated free energies �b � 5�
by the VH, LH and FP approaches as a function of
number of the Fourier terms. Again, the VH method
gives the fastest convergence in the calculations of the
quantum free energy, while the FP method gives
the slowest convergence. In Fig. 2a it is hard to discern
the improvement due to increasing p by the VH ap-
proach because of the scale used in the ®gure. In a scale-
up of Fig. 2a, i.e. Fig. 2b, we can clearly see that the
increase of p will indeed improve the calculated free
energy and only relatively small p is needed to achieve
high accuracy. Our results indicate that our approach
not only accounts for large anharmonicity, but also gives
very accurate quantum mechanical free energy at low
temperature.

It is instructive to examine the relation between the
local and the variational harmonic frequencies: Fig. 3
compares both in the model system, with p � 0. At high
temperature �b � 0:1�, the harmonic frequency is similar
to its counterpart, but at low temperature �b � 5�, sig-
ni®cant deviations become obvious, especially in the
region near the potential well. This result suggests that
the LH approach could be used as an approximation
to the VH approach at high temperature. This could
be useful in realistic applications when more complex
potential surfaces are involved.

In summary, we have introduced a path integral
method to evaluate the quantum mechanical free energy.
This method, using the variational harmonic reference
system and implemented by the partial averaging tech-
nique, recasts the quantum mechanical free energy into a
modi®ed classical con®gurational integral, which can be

Fig. 1. The calculated free energies F of the model system with the
anharmonic coupling c � 250 (see Eq. 17), plotted as a function of
b for p � 6 (b is 1=kT , where k is the Boltzmann constant and T is
temperature; p is the number of terms in the Fourier expansion of
the path). The free energies calculated by the VH, LH and FP
approaches are denoted by ®lled circles, open squares and ®lled
triangles, respectively. The exact values are plotted as a dotted line

204



conveniently calculated by the usual numerical schemes
like the Monte Carlo method. Tognetti and coworkers
[18] have recently explored similar implementations of
the VH approach. Our results show that the VH ap-
proach is superior to other approaches considered in this
paper in terms of accuracy and convergence. It should be
noted that the di�erence between the VH and the LH
methods lies in the way that the harmonic frequency is
calculated, whereby the LH method retains information
about the harmonic potential at the centroid, while the
VH method includes the correction to the harmonic
potential introduced by the ¯uctuations of the path away
from the centroid. It might be argued that the VH
method is less practical than the LH method, especially
in the N -dimensional applications, since the VH method
involves an optimization of the e�ective harmonic pa-
rameters. However, in numerical calculations, the opti-
mization involves only trivial iterative calculations of
Eqs. (7) and (8), or Eqs. (14) and (15), which quickly
converge after a few steps. Actually, the most CPU-
consuming part in both LH and VH methods is

the calculation of the e�ective potential. Hence, the VH
method is no less feasible than the LH method in
practical applications, but the VH method is obviously
superior to the LH method. Since this approach can
be applied to cases at rather low temperature, it is
also possible to extend this approach to calculate the
real-time propagator through a technique of analytical
continuation, and this work is now in progress in our
laboratory.
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Fig. 2. a Convergence of the calculated free energy F as a function
of the number of Fourier terms p at b � 5. The free energies
calculated by the VH, LH and FP approaches are denoted by ®lled
circles, open squares and ®lled triangles, respectively. The calculated
free energies using the FP method with p < 2 are o� scale and are
not plotted. b The free energy calculated by the VH approach as a
function of the number of the Fourier terms p at b � 5. This ®gure
is a scale-up of a to show the improvement of the calculated free
energies with increasing p

Fig. 3. The variational and local harmonic frequencies x of the
model system as a function of coordinate x. The local harmonic
frequency (solid line) is similar to the variational harmonic
frequency at high temperature (b � 0:1, dotted line), but at low
temperature, the variational harmonic frequency (b � 5, dashed
line) deviates signi®cantly from the harmonic frequency, especially
near the potential well
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